반응형

저번에는 Buck converter에 대한 내용을 봤는데, 오늘은 Boost converter에 대해서 알아보겠습니다.

 

(본 자료는 경북대학교 교수님의 자료를 바탕으로 만든 내용입니다)


 

Boost converter는 Buck converter와 다르게 Step-up 컨버터라고 불리며, 승압을 해주는 컨버터 입니다. 예를 들어 일본에서 110V의 콘센트를 쓸 때, 우리가 쓰는 220V로 변환해주기 위해 꽂는 돼지코가 승압기 역할을 해준다고 보면 됩니다. 

그러면 부스트 컨버터를 강하게(?)만들면 좋지 않냐고 하는데, 보통 전압이 2배가 되면 인덕터에 많은 전류가 흘러서 스위치가 점점 뜨거워지기 때문에, 보통 Conversion Ratio가 2가 되는 경우 까지만 쓴다고 합니다. 이는 아래 내용을 통해 다시 한번 더 확인할 수 있습니다.

 

Boost Converter

 

 

부스트 컨버터에 대한 내용을 하기에 앞서, 커패시터가 정상상태 일 때 커패시터의 전압이 일정하여, 흐르는 전류가 0이라는 것을 인지하고 갑니다.

 

 

벅 컨버터와 마찬가지로, 부스트 컨버터 또한 스위치가 있기 때문에(MOSFET과 다이오드로 생각) 두 가지 케이스가 있는데, 이를 등가회로로 해석해봅니다.

 

 

위의 식대로 가도 되지만, 출력 전류를 io로 봤을 때 io = - ic가 되는 것을 볼 수 있습니다. 왜 복잡하게 출력전류를 추가하냐고 묻는다면, 그냥 회로 공부하다 보니 출력부분에 관심이 생겨서 그렇다고 말하고 싶습니다 헤헤

 

두 번째 케이스를 보면, Small ripple approximation에 의해 인덕터에 흐른 전류를 I로 보고, 키르히호프의 법칙을 통해 커패시터의 흐르는 전류값을 구할 수 있습니다.

 

 

 

정리하면, 왼쪽은 부스트 컨버터가 ON 되었을 때, 오른쪽은 OFF되었을 때인 것을 볼 수 있습니다.

 

근데 부스트의 OFF부분을 보면, 마치 벅 컨버터의 ON과 유사한 걸 볼 수 있습니다. 

이를 통해서 알 수 있는 것은 무엇일까...한번 고민해보려고 합니다! (반도체 잘 모르는 공학도라서 죄송합니다 ㅠ)

 

 

부스트 컨버터의 인덕터 전압과 커패시터 전류를 그래프로 나타냈으며, 이를 통해 Conversion Ratio M(D)를 구할 수 있습니다. 승압 컨버터이기 때문에 M(D)가 위로 가는 거라고 예상할 수 있습니다.

 

위 그림을 보면 Conversion Ratio가 승압의 형태로 나타나는 것을 볼 수 있습니다.

 

 

커패시터에 흐르는 전류를 통해서도 Conversion Ratio를 구할 수 있습니다. 이때 신기한 사실은, 출력 전류와 입력 전류의 비로 M(D)를 구할 수 있다는 겁니다.

 

벅 컨버터와 부스터 컨버터는 유사한 특징을 지니고 있는데, 위에 나타난 것 처럼 부스트 컨버터는 Conversion Ratio를 전류로도 나타낼 수 있다는 차이점이 있습니다.

 

 

이번에는 인덕터에 흐르는 전류를 생각해봅니다. 인덕터 전압 공식을 이용하여 ON, OFF일 때를 생각하여 각각 구하고, 기울기를 통해서 iL값을 구할 수 있습니다. 즉, 리플의 크기를 조정하기 위해선 인덕턴스가 관여하는 것을 볼 수 있습니다.

 

마지막으로 커패시터에 걸리는 전압을 분석할 수 있습니다. 

 

 

쓰다 보니, 뭔가 중구난방이 된 부스트 컨버터 분석 글이었습니다..하하..

다음에는 축 컨버터에 대한 내용으로 돌아오겠습니다!

반응형
반응형

안녕하세요. 공대생 4학년인 코딩부자 입니다. 코딩부자라고 소개하고, 전력변환시스템을 공부하다니 아이러니합니다!

3학년 때 까지만 해도 SW의 길을 선택했는데, 4학년이 되어서 HW의 길로 방향을 바꿔서 그렇습니다 하하

 

TMI는 여기까지 하고, Buck converter의 원리를 보도록 하죠

 

(본 자료는 경북대학교 교수님의 자료를 바탕으로 만든 내용입니다)


 

.

Buck Converter 와 Boost Converter는 SPDT라는 회로로 이루어져있습니다. 여기서 SPDT란 Single Pole Double Throw의 약자로, 하나의 폴과 두 개의 로드를 가지고 있다고 보면 됩니다.

 

아래 그림을 보면 더 이해가 잘 될 겁니다!

 

 

출처 : https://www.huimultd.com/kr/information/SPDT_Solid_State_Relay/

 

 

 

Buck 컨버터는 위와 스위치 하나, 인덕터 하나, 커패시터 하나, 저항 하나로 이루어진 컨버터 입니다. 여기서 컨버터란 교류 신호를 직류 신호로(AC -> DC)로 바꾸는 역할을 합니다. TMI 하나 더 하자면, 나중에 배울 인버터(직류 신호 -> 교류 신호)도 컨버터를 바탕으로한 회로입니다. 

 

<이건 그냥 제 생각입니다..!>

벅 컨버터의 우측을 보면 LPF(Low-Pass-Filter)가 있는 걸 볼 수 있는데, 이 덕분에 Small Ripple Approximation을 가정할 수 있다고 생각합니다...(아닐 수 있어요 ㅠ)

 

 

벅 컨버터는 Step down 역할을 하는데, 즉 강압을 하는 컨버터 입니다. 여기서 강압이란 출력 전압을 낮춰주는 것을 의미합니다. 예를 들어 우리나라의 220v전력을 쓰는 콘센트를 일본에 110v콘센트에 꽂기 위해선 벅 컨버터를 써야한다고 생각하면 됩니다. 그 반대가 승압인데, 승압은 Boost Converter의 내용이므로, 뒤에 다뤄 보도록 하겠습니다.

 

그리고 우측에 그래프를 보면 M(D) = D라는 걸 볼 수 있는데, 여기서 D는 듀티사이클 비(신호 한 주기에서 ON되어 있는 비율)을 나타내며, 저는 D를 0이상 1이하로 나타냅니다.

 

또한 M(D)는 강압비로, 벅 컨버터에서는 듀티사이클과 같습니다. 그 이유는 밑에 가면 나옵니다..!(하하)

 

 

부스트 컨버터에 대한 내용은 배우지 않았지만, 위의 그림을 빌려서 하나만 설명해보겠습니다.

위쪽에 있는 벅 컨버터의 입력 부분은 스위치가 ON되면 전류가 흐르고, OFF되면 흐르지 않습니다. 그래서 리플성분이 크고, 출력 부분에는 이와 반대로 ON/OFF상태에서 전류가 비슷하게 흐르기 때문에 리플이 작다고 볼 수 있습니다.

 

 

또한 벅 컨버터를 이해하기 위해서 Small Ripple Approximation이라는 개념을 이용합니다. 요약하자면, 출력 전압은 출력 전압의 평균과 같다!라고 보면 됩니다. (물론 실제로 같은 건 아니고, 비슷하다!라고 봐야합니다)

 

 

 

벅 컨버터를 두 가지의 경우로 나눠서 보겠습니다

 

 

벅 컨버터가 ON인 경우에는 인덕터에 에너지를 저장하고, 그 인덕터를 통해 흐르는 전류가 부하에도 전달됩니다.

벅 컨버터가 OFF인 경우에는 인덕터에 저장되어있던 에너지가 방출되고, 그로 인해 전류가 흐릅니다.

 

 

벅 컨버터의 ON/OFF경우에 대해서, 인덕터 전압 식을 이용해서 각 경우의 인덕터 전류를 구할 수 있습니다.

그리고 마지막으로 인덕턴스 까지 구하면 뚝딱!!

 

 

그리고 인덕터의 Voltage second balance Low를 통해서, 시작 부분에서 왜 M(D) = D 인지 증명할 수 있습니다.

 

 

인덕터 전압의 그래프를 퓨리에 시리즈로 변환하고, Voltage second balance low를 통해 DVg = V라는 방정식을 얻을 수 있고, 이에 따라서 출력전압/입력전압의 비가 D(듀티사이클)이 되는 것을 확인할 수 있습니다.

 

 

빠밤~~ 즉, 출력 전압이 듀티사이클에 의해 변화시킬 수 있다는 결론이 나옵니다. 즉 220v 콘센트를 꽂은 후에 출력 전압이 110v가 나오도록 하려면, 듀티사이클을 1/2만큼만 만들어 주면(반 주기만 ON하면) 된다는 겁니다.

단, 이론적으론 그러나 실제의 경우는 다릅니다.. 하하

 

 

이상으로 코딩부자의 벅 컨버터 원리 내용입니다.

반응형

+ Recent posts